Принцип работы лазерного оборудования. Школьная энциклопедия


Цветные лазерные принтеры начинают активно завоевывать рынок печати. Если еще несколько лет назад цветная лазерная печать была для большинства организаций и тем более для отдельных граждан чем-то недосягаемым, то сейчас купить цветной лазерный принтер может позволить себе весьма широкий круг пользователей. Быстрорастущий парк цветных лазерных принтеров приводит к тому, что растет и интерес к ним со стороны служб технической поддержки.

Принципы цветной печати

В принтерах, как и в полиграфии для создания цветных изображений применяется субтрактивная цветовая модель, а не аддитивная, как в мониторах и сканерах, в которых любой цвет и оттенок получается смешением трех основных цветов – R (красный), G (зеленый), B (синий). Субтрактивная модель цветоделения называется так потому, что для образования какого-либо оттенка надо вычесть из белого цвета “лишние” составляющие. В печатающих устройствах для получения любого оттенка в качестве основных цветов используют: Cyan (голубой, бирюзовый), Magenta (пурпурный), Yellow (желтый) . Эта цветовая модель получила название CMY по первым буквам основных цветов.

В субтрактивной модели при смешивании двух или более цветов дополнительные цвета получаются посредством поглощения одних световых волн и отражения других. Голубая краска, например, поглощает красный цвет и отражает зеленый и синий; пурпурная краска поглощает зеленый цвет и отражает красный и синий; а желтая краска поглощает синий цвет и отражает красный и зеленый. При смешивании основных составляющих субтрактивной модели можно получить различные цвета, которые описаны ниже:

Голубой + Желтый = Зеленый

Пурпурный + Желтый = Красный

Пурпурный + Голубой = Синий

Пурпурный + Голубой + Желтый = Черный

Стоит отметить, что для получения черного цвета необходимо смешать все три составляющие, т.е. голубой, пурпурный и желтый, однако получить качественный черный цвет таким образом, практически невозможно. Получаемый цвет будет не черным, а скорее грязно-серым. Для устранения такого недостатка к трем основным цветам добавляется еще один – черный. Такая расширенная цветовая модель называется CMYK (C yan-M agenta-Y ellow-blacK – голубой-пурпурный-желтый-черный). Введение черного цвета позволяет значительно повысить качество цветопередачи.

Принтер HP Color LaserJet 8500

После того, как мы обсудили общие принципы построения и работы цветных лазерных принтеров, стоит ознакомиться более подробно с их устройством, механизмами, модулями и блоками. Это лучше всего сделать на примере какого-нибудь принтера. В качестве такого примера давайте возьмем принтер фирмы Hewlett-Packard Color LaserJet 8500.

Основными его характеристиками являются :
- разрешающая способность: 600 DPI;
- скорость печати в “цветном” режиме: 6 стр/мин.;
- скорость печати в “черно-белом” режиме: 24 стр./мин.

Основные узлы принтера и их взаимное расположение приводится на рис.5.

Формирование изображения начинается с того, что с поверхности фотобарабана снимаются (нейтрализуются) остаточные потенциалы. Это делается для того, чтобы последующий заряд фотобарабана был более равномерным, т.е. перед зарядом он полностью разряжается. Снятие остаточных потенциалов осуществляется путем засвечивания всей поверхности барабана специальной лампой предварительного (кондиционирующего) экспонирования, которая представляет собой линейку светодиодов (рис.7).

Далее на поверхности фотобарабана создается высоковольтный (до -600В) отрицательный потенциал. Заряжается барабан коротроном в виде ролика из токопроводящей резины (рис.8). На коротрон подается переменное напряжение синусоидальной формы с отрицательной постоянной составляющей. Переменная составляющая (АС) обеспечивает равномерное распределение зарядов на поверхности, а постоянная составляющая (DC) заряжает барабан. Уровень постоянной составляющей может регулироваться при изменении плотности печати (плотности тонера), что делается с помощью драйвера принтера или регулировками через панель управления. Увеличение отрицательного потенциала приводит к уменьшению плотности, т.е. к более светлому изображению, уменьшение же потенциала – наоборот, к более плотному (темному) изображению. Фотобарабан (его внутренняя металлическая основа) должен быть обязательно “заземлен”.

После всего этого на поверхности фотобарабана лазерным лучом создается изображение в виде заряженных и незаряженных участков. Световой пучок лазера, попадая на поверхность барабана, разряжает данный участок. Лазером засвечиваются те участки барабана, на которых должен быть тонер. Те участки, которые должны быть белыми, лазером не засвечиваются, и на них остается высокий отрицательный потенциал. Луч лазера перемещается по поверхности барабана с помощью вращающегося шестигранного зеркала, находящегося в сборке лазера. Изображение на барабане называют скрытым электрографическим изображением, т.к. оно представлено в виде невидимых электростатических потенциалов.

Скрытое электрографическое изображение становится видимым после прохождения через узел проявки. Проявительный модуль черного тонера является стационарным и находится в постоянном соприкосновении c фотобарабаном (рис.9).

Цветной проявительный модуль представляет собой карусельный механизм с поочередной подачей “цветных” картриджей к поверхности барабана (рис.10). Черный тонер-порошок является магнитным однокомпонентным, а цветные порошки – однокомпонентные, но немагнитные. Любой тонер-порошок заряжается до отрицательного потенциала за счет трения о поверхность проявительного вала и дозировочный ракель. За счет разности потенциалов и кулоновского взаимодействия зарядов, отрицательно заряженные частички тонера притягиваются к тем участкам фотобарабана, которые разряжены лазером и отталкиваются от участков с высоким отрицательным потенциалом, т.е. от тех, которые не засвечивались лазером. В каждый момент времени осуществляется проявка тонером только одного цвета. В момент проявки на проявительный вал подается напряжение смещения, которое вызывает перенос тонера с проявительного вала на фотобарабан. Это напряжение представляет собой переменное напряжение прямоугольной формы с отрицательной постоянной составляющей. Уровень постоянной составляющей может регулироваться при изменении плотности тонера. После окончания процедуры проявки изображение на фотобарабане становится видимым, и его необходимо перенести на барабан переноса.

Поэтому следующим этапом в создании изображения является передача проявленного изображения на барабан переноса. Этот этап называют этапом первичного переноса. Перенос тонера с одного барабана на другой происходит за счет электростатической разности потенциалов, т.е. отрицательно заряженные частички тонера должны притянуться положительным потенциалом на поверхности барабана переноса. Для этого на поверхность барабана переноса подается положительное напряжение смещения постоянного тока от специального источника питания, в результате чего вся поверхность этого барабана имеет положительный потенциал. При полноцветной печати напряжение смещения на барабане переноса должно постоянно увеличиваться, т.к. после каждого прохода количество отрицательно заряженного тонера на барабане возрастает. И для того, чтобы тонер мог переноситься и ложиться поверх уже существующего тонера, напряжение переноса увеличивается с каждым новым цветом. Этот этап формирования изображения показан на рис.11.

В процессе переноса тонера на барабан переноса отдельные частички тонера могут остаться на поверхности фотобарабана, и они должны быть удалены, чтобы не искажать последующее изображение. Для удаления остатков тонера в принтере имеется блок очистки фотобарабана (см. рис 17). В составе этого модуля имеется специальный вал – кисть для снятия заряда с тонера и фотобарабана – это ослабляет силу притяжения тонера к фотобарабану. Также имеется традиционный очистительный ракель, который соскребает тонер в специальный бункер, где он и хранится до тех пор, пока очистительный модуль не будет заменен или не будет вычищен.

Далее фотобарабан снова заряжается (после предварительного разряда), и процесс повторяется до тех пор, пока на барабане переноса не будет полностью сформировано изображение соответствующего цвета. Поэтому размер барабана переноса должен полностью соответствовать формату печати, т.е. в данной модели принтера длина окружности этого барабана соответствует длине листа формата А3 (420 мм). После нанесения тонера одного цвета процесс формирования изображения полностью повторяется с той лишь разницей, что используется проявительный блок другого цвета. Для использования другого проявительного узла карусельный механизм поворачивается на заданный угол и подводит “новый” проявительный вал к поверхности фотобарабана. Таким образом, при формировании полноцветного изображения, состоящего из четырех цветовых составляющих, барабан переноса проворачивается четыре раза, и на каждом обороте к уже существующему тонеру добавляется тонер другого цвета. При этом первым наносится порошок желтого цвета, потом пурпурного, потом голубого и уже последним наносится черный порошок. В итоге, на барабане переноса создается полноцветное видимое изображение, состоящее из частичек четырех разноцветных тонер-порошков.

После того, как тонер-порошок оказывается на поверхности барабана переноса, он проходит через блок дополнительного заряда. Этот блок (рис.12) представляет собой проволочный коротон, на который подается переменное напряжение синусоидальной формы (АС) с отрицательной постоянной составляющей (DC). Этим напряжением тонер порошок дополнительно заряжается, т.е. его отрицательный потенциал становится выше, что будет способствовать более эффективному переносу тонера на бумагу. Кроме того, дополнительное напряжение уменьшает значение положительного потенциала барабана переноса, что способствует правильному расположению тонера на барабане переноса и препятствует смещению тонера. Как результат этого – точное воспроизведение цветовых оттенков. Напряжение дополнительного заряда подается на барабан переноса во время нанесения желтого тонера, т.е. в самом начале процесса формирования изображения. При нанесении желтого тонер-порошка напряжение дополнительного заряда устанавливается на минимальное значение, и после нанесения каждого нового цвета это напряжение увеличивается. Максимальное напряжение дополнительного заряда подается во время нанесения черного тонера.

Далее полноцветное видимое изображение с барабана переноса должно быть перенесено на бумагу. Этот процесс переноса получил название вторичного переноса. Вторичный перенос осуществляется еще одним коротроном, выполненным в виде транспортного ремня (рис.13). Тонер перемещается на бумагу под действием электростатических сил, т.е. за счет разности потенциалов тонер-порошка (отрицательный) и коротрона вторичного переноса, на который подается положительное напряжение смещения. Так как вторичный перенос осуществляется только после четырех оборотов барабана переноса, транспортный ремень коротрона должен подать бумагу только тогда, когда все цвета нанесены, т.е. во время уже четвертого оборота, а до этого момента времени ремень должен быть в таком положении, чтобы бумага не касалась барабана переноса.

Таким образом, транспортный ремень во время создания изображения опущен вниз, и не соприкасается с барабаном переноса, а в момент вторичного переноса поднят вверх и касается этого барабана. Перемещение транспортного ремня коротрона осуществляется эксцентриковым кулачком, который приводится в действие электрической муфтой по команде от микроконтроллера (рис.14).

При вторичном переносе лист бумаги может притягиваться к поверхности барабана переноса за счет разницы электростатических потенциалов. Это может стать причиной накручивания листа бумаги на барабан, и соответственно к замятию бумаги. Для предотвращения такого явления в составе принтера имеется система отделения бумаги и снятия с нее статического потенциала. Система представляет собой коротрон, на который подается переменное напряжение синусоидальной формы с положительной постоянной составляющей. Расположение коротрона относительно бумаги и барабана переноса показано на рис.15.

На этапе вторичного переноса некоторые частички тонера не переносятся на бумагу, а остаются на поверхности барабана. Чтобы эти частички не мешали созданию следующего листа и не искажали изображения необходимо произвести очистку барабана переноса и удалить остатки тонера. Очистка барабана переноса является достаточно сложным процессом. Для этой процедуры задействуется специальный ролик очистки, фотобарабан и блок очистки фотобарабана. Очистка барабана переноса должна осуществляться не постоянно, а только после вторичного переноса, т.е. система очистки должна управляться аналогично коротрону переноса. Пока создается изображение, система очистки не активна, а когда начинается перенос тонера на бумагу - включается. Первым этапом очистки является перезаряд остаточного тонер-порошка, т.е. его потенциал меняется с отрицательного на положительный. Для этого применяется ролик очистки, на который подается переменное синусоидальное напряжение с положительной постоянной составляющей. Этот ролик прижимается к поверхности фотобарабана в период очистки, а в процессе создания изображения он откидывается. Управляется ролик эксцентриковым кулачком, который в свою очередь приводится в действие соленоидом (рис.16).

После этого положительно заряженный тонер переносится на фотобарабан, на котором по-прежнему имеется отрицательное напряжение смещения. И уже с поверхности фотобарабана тонер счищается очистительным ракелем блока очистки фотобарабана (рис.17).

Заканчивается создание полноцветного изображения фиксацией тонера на бумаге с помощью температуры и давления. Лист бумаги проходит между двумя роликами блока фиксации (печки), разогревается до температуры порядка 200 ºС, тонер расплавляется и вдавливается в поверхность бумаги. Для предотвращения прилипания тонера к печке на нагревательный вал подается отрицательное напряжение смещения, в результате чего отрицательный тонер-порошок остается на бумаге, а не на тефлоновом валу.

Мы рассмотрели принцип работы только одного принтера одной фирмы. Другими производителями могут применяться и иные принципы формирования изображения и другие технические решения при построении принтеров, однако, все эти решения будут весьма близки к тем, что были рассмотрены ранее.

Сложно в наше время найти человека, который никогда не слышал бы слова «лазер» , однако чётко представляют, что это такое, весьма немногие.

За полвека с момента изобретения лазеры разных видов нашли применение в широком спектре направлений, от медицины до цифровой техники. Так что же такое лазер, каков принцип его действия, и для чего он нужен?

Что такое лазер?

Возможность существования лазеров была предсказана Альбертом Эйнштейном, который ещё в 1917 году опубликовал работу, говорящую о возможности излучения электронами квантов света определённой длины. Это явление было названо вынужденным излучением, но долгое время оно считалось нереализуемым с технической точки зрения.

Однако с развитием технических и технологических возможностей создание лазера стало делом времени. В 1954 году советские учёные Н. Басов и А. Прохоров получили Нобелевскую премию за создание мазера – первого микроволнового генератора, работающего на аммиаке. А в 1960 году американец Т. Мейман изготовил первый квантовый генератор оптических лучей, названный им лазером (Light Amplification by Stimulated Emission of Radiation). Устройство преобразовывает энергию в оптическое излучение узкой направленности, т.е. световой луч, поток квантов света (фотонов) высокой концентрации.

Принцип функционирования лазера

Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.

Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.

Классификация лазеров

По мере исследования природы и свойств лазеров были открыты различные виды этих лучей. По виду состояния исходного вещества лазеры могут быть:

  • газовыми;
  • жидкостными;
  • твердотельными;
  • на свободных электронах.



В настоящее время разработано несколько способов получения лазерного луча:

  • при помощи электрического тлеющего либо дугового разряда в газовой среде – газоразрядные;
  • при помощи расширения горячего газа и создания инверсий населённости – газодинамические;
  • при помощи пропускания тока через полупроводник с возбуждением среды – диодные или инжекционные;
  • путём оптической накачки среды лампой-вспышкой, светодиодом, другим лазером и т. д.;
  • путём электронно-лучевой накачки среды;
  • ядерной накачкой при поступлении излучения из ядерного реактора;
  • при помощи особых химических реакций – химические лазеры.

Все они обладают своими особенностями и отличиями, благодаря которым находят применение в различных сферах промышленности.

Практическое использование лазеров

На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:

  • резка и сварка металлов, пластмасс, других материалов;
  • нанесение изображений, надписей и маркировка поверхности изделий;
  • сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
  • формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
  • передача информационных пакетов при помощи стекловолокна;
  • выполнение хирургических операций и других лечебных воздействий;
  • косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
  • наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
  • создание и использование голографических методов;
  • применение в различных научно-исследовательских работах;
  • измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
  • запуск химических реакций для проведения различных технологических процессов.



Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.

Включает в себя семь последовательных операций по созданию заданного изображения на листе бумаги. Это весьма интересный и технологичный процесс, который можно разделить на два основных этапа: нанесение изображения и его закрепление. Первый этап связан с работой картриджа, второй протекает в блоке термозакрепления (печке). В итоге за считанные секунды на белом листе бумаги мы получаем интересующее нас изображение.

Итак, что же происходит за столь короткий промежуток времени в принтере? Давайте в этом разберемся.

Заряд

Напомним, что тонер является мелкодисперсной субстанцией (5-30 микрон), и его частицы очень легко принимают любой электрический заряд.

В картридже ролик заряда обеспечивает равномерную передачу отрицательного заряда фотобарабану. Это происходит когда ролик заряда прижимается к фотобарабану, и вращаясь в одном направлении (при этом равномерно сообщая отрицательный статический заряд фотобарабану), заставляет его вращаться в другом.

Таким образом, поверхность фотобарабана имеет равномерно расположенный по площади отрицательный заряд.

Экспонирование

В следущем процессе происходит экспонирование будущего изображения на фотобарабане.

Это происходит благодаря лазеру. Лазерный луч при попадании на поверхность фотобарабана снимает в этом месте отрицательный заряд (точка становиться нейтрально заряженной). Таким образом, лазерный луч формирует будущую картинку по заданным координатам в программе. Исключительно в тех местах где это необходимо.

Так мы получаем экспонированную часть изображения в виде отрицательно заряженных точек на поверхности фотобарабана.

Проявка

Далее на экспонированное изображение на поверхности фотобарабана ровным тонким слоем с помощью ролика проявки наносится тонер. Частицы тонера принимают отрицательный заряд и формируют на поверхности барабана будущее изображение.

Перенос

Следущим этапом является перенос тонерного отрицательно заряженного изображения с фотобарабана на чистый лист бумаги.

Это происходит в результате соприкосновения ролика переноса изображения с листом бумаги (лист проходит между роликом переноса и фотобарабаном). Ролик переноса имеет высокий положительный потенциал, в результате чего все отрицательно заряженные частицы тонера (в виде сформированного изображения) переносятся на лист бумаги.

Закрепление

Следующим этапом в лазерной печати является закрепление изображения из тонера на листе бумаги в блоке термозакрепления (в печке).

По своей сути это процесс «запекания» на бумаги. Лист с тонером, проходя между термовалом и прижимным роликом, подвергается термо-барической (температура и давление) обработке, в результате чего тонер на листе закрепляется и становится устойчивым к внешним механическим воздействиям.

На нашем рисунке Вы видите термовал и прижимной ролик. Термовал используется в ряде аппаратов лазерного типа печати. Внутри термовала применяется галогеновая лампа, которая и осуществляет разогрев (нагревательный элемент).

Существует и другие модели аппаратов лазерного типа печати, где вместо термовала используется термопленка (как нагревательный элемент). Отличие между ними в том, что при работе галогенового нагревателя требуется больше времени. Стоит отметить тот факт, что аппараты с термопленкой весьма сильно подвержены механическим воздействиям посторонних предметов (скрепок, скоб от степлера) на листе бумаги. Это чревато выходом из строя самой термопленки. Она очень чувствительна к повреждениям.

Очистка

Так как при всем этом процессе на поверхности фотобарабана остается небольшое количество тонера, в картридже устанавливается ракель (чистящее лезвие) для очистки от остаточных микрочастиц тонера вала фотобарабана.

Прокручиваясь, вал подвергается очистке. Остаточный порошок попадает в бункер с отработанным тонером.

Снятие заряда

При последнем этапе вал фотобарабана соприкасается с роликом заряда. Это приводит к тому, что на поверхности барабана снова выравнивается «карта» отрицательного заряда (до этого момента на поверхности оставались как отрицательно заряженные места так и нейтрально заряженные – они и были проекцией изображения).

Таким образом ролик заряда снова сообщает поверхности фотобарабана равномерно распределенный отрицательный потенциал.

Так заканчивается цикл печати одного листа.

Заключение

Таким образом технология лазерной печати включает в себя семь последовательных этапов переноса и закрепления изображения на бумаге. На современных аппаратах такой процесс печати одного изображения на бумаге А4 занимает всего считанные секунды.

При происходит замена износившихся внутренних деталей, таких как фотобарабан, ролик заряда или магнитный вал. Эти составляющие находятся внутри картриджа, и Вы можете увидеть их на рисунке, приведенном выше. Из-за износа этих элементов значительно ухудшается качество печати.

Немного об истории лазерной печати

Ну и напоследок немного о разработке технологии лазерной печати. Удивительно, но технология лазерной печати появилась раньше, например той же технологии матричной печати. Chester Carlson в 1938 году изобрел метод печати, получивший название электрография. Он применялся в копировальных аппаратах того времени (60-70-е года прошлого века).

Непосредственно саму разработку и создание первого лазерного принтера предписывают Гэри Старквеатер (Gary Starkweather). Он являлся сотрудником фирмы Xerox. Его идея заключалась в том, чтобы использовать технологию копировального устройства для создания принтера.

В 1971 году впервые появился первый лазерный принтер фирмы Xerox. Он назывался Xerox 9700 Electronic Printing System. Серийное производство было налажено позже – в 1977 году.

Реалии таковы, что заставку «Доступ к сайту запрещен» российские беттеры видят чаще, чем сам сайт букмекерской конторы Мелбет. Да этому никто уже и не удивляется: от чистки интернета, устроенной Роскомнадзором, пострадали не только клиенты Melbet, а вообще все азартные игроки. Ведь в списке заблокированных сайтов оказалось большинство букмекерских контор, покер-румов и онлайн-казино. Их работа в онлайновом пространстве РФ была названа незаконной и прекращена таким вот элегантным способом - блокировкой.

Но на всякое действие есть противодействие, а потому в России быстро нашлись умельцы, которые без проблем заходили на любые заблокированные сайты. Для этого достаточно было установить Tor или поставить VPN-расширение в любимый браузер. Нашелся и другой обходной путь, который игрокам предоставила сама БК Мелбет - зеркало сайта. И пока Роскомнадзор отчитывался об успешной блокировке официальных сайтов букмекеров, Мелбет просто скопировала собственный сайт - и опубликовала его под другим доменом.

Так в интернете появилось два сайта бк Melbet: зеркало, на которое мог попасть любой осведомленный игрок, и старый сайт, благополучно числящийся в списке запрещенных. Помимо этой незначительной детали, разницы между двумя сайтами не было никакой. Клиенты Мелбет без проблем попадали в свои старые аккаунты с зеркала и спокойно продолжали делать ставки. Но продолжалось это ровно до тех пор, пока зеркало Мелбет не заблокировал Роскомнадзор.

Никакой проблемой это, конечно, не стало: зеркала - вещь универсальная и по количеству своему не ограниченная. Букмекеру ничего не стоило выпустить еще одну копию своего сайта, а после ее блокировки - еще одну и так далее. Разумеется, все эти переезды с зеркала на зеркало весьма нервировали, ведь каждый раз игроку приходилось снова искать, под каким доменным именем «запасной» сайт находится сейчас.

Теперь эта вечная проблема беттеров решена. Перейдя по ссылке выше, вы попадете на рабочее зеркало Melbet. Воспользуйтесь этой опцией при своем следующем поиске: так вы однозначно сэкономите и время, и нервы - а они вам еще понадобятся при игре на ставках. Кстати говоря, если «нелегальная» игра - это ваш неосознанный выбор, есть вариант, который навсегда избавит вас от проблем с блокировками. Это игра в легальных конторах - а многие из них ничуть не уступают бк Мелбет. Так что выйти из тени никогда не поздно).

Ставки Melbet сегодня Доступ к сайту Мелбет 2019 сегодня! 10 и поставить всю сумму пополнения на любое событие, коэффициент которого составит 1. Квалифицирующая ставка должна быть сделана в течение 30 дней с момента внесения первого депозита. 10 мобильного Фрибета, доступного для ставок только через приложение на платформах Android и IOS. После зачисления Фрибета у игрока есть 7 дней для его использования.

Лазерный принтер – одно из оригинально разработанных электронных устройств, чья работа основана на ксерографировании или электрофотографии. Но если Вам интересно как работают лазерные принтеры, выдавая четкие и ровно напечатанные страницы, то для Вас будет интересно прочитать эту статью. В этой статье мы попробуем вкратце дать объяснение принципу работы лазерного принтера.

Лазерные принтеры способны распечатывать страницы быстрее, чем старые матричные и струйные принтеры. Кроме превосходства перед другими принтерами в скорости, лазерный принтер превосходит их в точности печати. Но как лазер, который представляет собой монохроматический луч света, способствует процессу печати в принтере? В этой статье мы постараемся выяснить, на каком принципе основана работа лазерного принтера. Прочитав эту статью, Вы наверняка будете больше ценить это удивительное электронное изобретение.

О лазерном принтере

Гари Старквезер изобрел лазерный принтер в 1969 году, работая на ксероксе. Он использовал принцип ксерографической печати, усовершенствовав тем самым скорость печати, в прошествии нескольких десятилетий данный принтер быстро завоевал рынок. Первый коммерческий вариант лазерного принтера была модель IBM 3800, которая имела размер большой комнаты. В процессе технологического развития лазерный принтер также усовершенствовался и стал значительно меньше в размерах, более аккуратным, и стал гораздо быстрее распечатывать страницы. Технология производства, которая изначально стоила тысячи долларов, в настоящее время очень сильно изменилась, а стоимость лазерного принтера не превышает 100 долларов. Портативные лазерные принтеры являются главным выбором в большинстве учреждений. Итак, давайте разберемся, как так получилось, что лазерный принтер способен печатать около 200 страниц в минуту

Как работает лазерный принтер?

Чтобы выяснить, как работает лазерный принтер необходимо понять лишь единственный физический закон – «разноимённые заряды притягиваются, а одноимённые заряды отталкиваются». Давайте проследим работу лазерного принтера при каждом шаге печати страницы. Вы загружаете в отсек принтера чистую бумагу и подаёте команду на печать, через несколько секунд Вы получаете аккуратно распечатанные страницы. Но, что происходит в эти несколько секунд!?

  1. Шаг1: Орган управления принтера получает набор данных и создаёт растровое изображение
    Как только Вы подали команду принтеру на печать, персональный компьютер кодирует информацию страницы с помощью специального машинного «языка управления печатью». Затем кодированную информацию получает орган управления принтера, он считывает её и подготавливает страницу согласно исходным условиям печати, а затем подаёт сигнал устройству для растрового сканирования, которое в свою очередь уже преобразовывает сигнал в битовое или растровое изображение. Изображение временно сохраняется в памяти принтера, после чего начинается процесс печати.
  2. Шаг2: Вращающийся барабан фоторецептора обладает положительным зарядом
    Центральным местом лазерного принтера является барабан с фотопроводящей поверхностью, которая обладает определённым зарядом до тех пор, пока на неё не будет подан свет лазера, который в свою очередь заставляет эту поверхность разряжаться. Попадая на определённую область поверхности барабана, фотоны света (элементарные частицы, квант электромагнитного излучения) в этом месте увеличивают проводимость и заставляют эту область разряжаться. Т.е. можно сказать, что фотоны света убирают заряды из области попадания фотонов на поверхности вращающегося барабана.
    Поддержание постоянного заряда поверхности барабана происходит благодаря использованию скоротрона (натянутый провод, который находится под напряжением относительно барабана). Заряд на поверхности может быть как положительным, так и отрицательным. Давайте договоримся, что в дальнейшем барабан обладает положительным зарядом.
  3. Шаг3: Лазер делает электростатический рисунок страницы на фоточувствительной поверхности
    В процессе печати вращающийся барабан подвергается воздействию луча лазера. Используя целый комплекс из зеркал и линз, лазер набрасывает битовое изображение на поверхности барабана. Согласно условиям печати растровый процессор направляет лазерный луч на движущуюся фоточувствительную поверхность барабана. Области, в которых фотоны попадают на поверхность, разряжается, создавая сеть с отрицательным зарядом на положительно заряженной поверхности вращающегося барабана. Часть за частью, цельное битовое или растровое изображение вытравливается на поверхности в виде отрицательной электростатической картинки. Представьте оконное стекло, покрытое пылью. Вы можете на таком окне что-то нарисовать, стирая пыль со стекла пальцем, также и лазер рисует нужную картинку на поверхности барабана, стирая с неё положительные заряды.
  4. Шаг:4 Положительно заряженные частицы тонера (красящего порошка) встраиваются в области с отрицательными зарядами
    В ходе своей работы вращающийся барабан взаимодействует с положительно заряженными частицами тонера, который располагается в специальном бункере. Тонер представляет собой сухой порошок, сделанный из пигмента и пластичного полимера. Т.к. разноимённые заряды притягиваются, одноимённые заряды отталкиваются, то положительно заряженная поверхность барабана отталкивает частицы тонера. Но отрицательно заряженные (разраженные) области этой поверхности, которые в целом составляют электростатическую картину страницы, притягивают частицы тонера. Именно таким образом частицы тонера внедряются на поверхность барабана, прямо на места электростатической картины страницы.
  5. Шаг5: Чистая страница пропускается через барабан, происходить печать
    На данном этапе содержащийся на поверхности барабана тонер соприкасается с отрицательно заряженным чистым листом бумаги. Как только поверхность бумаги соприкасается с барабаном, уже положительно заряженные частицы тонера прилипают к бумаге, создавая необходимую нам страницу. После этого листок бумаги выкатывается из барабана, с прикреплёнными на нём частицами тонера.
  6. Шаг 6: С помощью нагретых роликов тонер закрепляется на бумаге
    Листок бумаги с нанесённым тонером пропускается через нагретую тефлоновую поверхность специально предусмотренных роликов, при этом расплавляется содержащийся в тонере пластик, что окончательно прикрепляет тонер к бумаге. И в конечном итоге мы получаем точную физическую копию имеющегося в электронном виде документа! Лист бумаги выкатывается из принтера, и мы можем использовать распечатанный документ в своих целях.

Таким образом, использование ксерографической техники печати, лазера, с помощью которого вытравливается электростатическая картинка страницы на положительно заряженной фоточувствительной поверхности специального вращающегося барабана, происходит точное присоединение заряженных частиц тонера к фоточувствительной поверхности барабана. Благодаря всему этому лазерный принтер предоставляет нам чётко напечатанные страницы на необыкновенно высокой скорости печати. Если сравнить лазерный и струйный принтер, лазерный принтер в этом случае будет вне конкуренции именно благодаря технологии, применяемой в нём. В то время как струйному принтеру необходимо распылять чернила, лазерному принтеру остаётся только позволить частицам тонера прикреплять к фоточувствительной поверхности, что естественно делает процесс печати проще и аккуратнее. Мы надеемся, что этот короткое описание, объясняющее принцип работы лазерного принтера, было для Вас интересным. Лазерный принцип – это отличный демонстрация того, что соединение простых научных законов могут удачно служить человеку.