Дифференциальные уравнения 2 порядка нелинейные. Как решать дифференциальные уравнения


Дифференциальные уравнения - раздел математики, изучающий теорию и способы решения уравнений, содержащих искомую функцию и ее производные различных порядков одного аргумента (обыкновенные дифференциальные) или нескольких аргументов (дифференциальные уравнения в частных производных). Дифференциальные уравнения широко используются на практике, в частности для описания переходных процессов.

Теория дифференциальных уравнений - раздел математики, занимающийся изучением дифференциальных уравнений и связанных с ними задач. Их результаты применяются во многих естественных науках, особенно широко - в физике.

Проще говоря, дифференциальное уравнение - это уравнение, в котором неизвестной величиной является некоторая функция.При этом, в самом уравнении участвует не только неизвестная функция, но и различные ее производные. Дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др.

Различают обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных. Более сложными являются интегро-дифференциальные уравнения.

Сначала дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции от времени.

Дифференциальное уравнение называется интегрируемых в квадратурах , если задачу нахождения всех развязок связей можно свести к вычислению конечного числа интегралов от известных функций и простых алгебраических операций.

История

Леонард Эйлер

Жозеф-Луи Лагранж

Пьер-Симон Лаплас

Жозеф Лиувилль

Анри Пуанкаре

Дифференциальные уравнения изобретены Ньютоном (1642-1727). Ньютон считал это свое изобретение настолько важным, что зашифровал его в виде анаграммы, смысл которой в современных терминах можно свободно передать так: «законы природы выражаются дифференциальными уравнениями».

Основным аналитическим достижением Ньютона было разложение всевозможных функций в степенные ряды (смысл второй, длинной анаграммы Ньютона в том, что для решения любого уравнения нужно подставить в уравнение ряд и приравнять члены одинакового степени). Особое значение имела здесь открытая им формула бинома Ньютона (разумеется, не только с целыми показателями, для которых формулу знал, например, Виет (1540-1603), но и, что особенно важно, с дробными и отрицательными показателями). Ньютон разложил в «ряды Тейлора» все основные элементарные функции Это, вместе с составленной им таблице первобытных (которая перешла в почти неизменном виде в современные учебники анализа), позволяло ему, по его словам, сравнивать площади любых фигур «за половину четверти часа».

Ньютон указывал, что коэффициенты его рядов пропорциональны последовательным производным функции, но не останавливался на этом подробно, поскольку он справедливо считал, что все вычисления в анализе удобнее проводить не с помощью кратных дифференцировок, а путем вычисления первых членов ряда. Для Ньютона связь между коэффициентами ряда и производными был скорее средством вычисления производных, чем средством составления ряда. Одним из важнейших достижений Ньютона является его теория солнечной системы, изложенная в «Математических принципах натуральной философии» («Principia») без помощи математического анализа. Обычно считают, что Ньютон открыл с помощью своего анализа закон всемирного тяготения. На самом деле Ньютону (1680) принадлежит лишь доказательство эллиптичности орбит в поле притяжения по закону обратных квадратов: сам этот закон был указан Ньютону Гуком (1635-1703) и, пожалуй, угадывался еще несколькими учеными.

Из огромного числа работ XVIII века по дифференциальным уравнениям выделяются работы Эйлера (1707-1783) и Лагранжа(1736-1813). В этих работах была прежде развита теория малых колебаний, а следовательно - теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n-мерном случае). Характеристическое уравнение линейного оператора долго называли секулярным, поскольку именно из такого уравнения определяются секулярные (возрастные, т.е. медленные по сравнению с годовым движением) возмущения планетных орбит согласно теории малых колебаний Лагранжа. Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777-1855) развивают также методы теории возмущений.

Когда была доказана неразрешимость алгебраических уравнений в радикалах, Жозеф Лиувилль (1809-1882) построил аналогичную теорию для дифференциальных уравнений, установив невозможность решения ряда уравнений (в частности таких классических, как линейные уравнения второго порядка) в элементарных функциях и квадратурах. Позже Софус Ли (1842-1899), анализируя вопрос об интегрировании уравнений в квадратурах, пришел к необходимости детально исследовать группы дифеоморфизмив (получившие впоследствии имя групп Ли) - так по теории дифференциальных уравнений возникла одна из самых плодотворных областей современной математики, дальнейшее развитие которой было тесно связано совсем с другими вопросами (алгебры Ли еще раньше рассматривали Симеон-Дени Пуассон (1781-1840) и, особенно, Карл Густав Якоб Якоби (1804-1851)).

Новый этап развития теории дифференциальных уравнений начинается с работ Анри Пуанкаре (1854-1912), созданная им «качественная теория дифференциальных уравнений» вместе с теорией функций комплексных переменных привела к основанию современной топологии. Качественная теория дифференциальных уравнений, или, как теперь ее чаще называют, теория динамических систем, сейчас развивается наиболее активно и имеет наиболее важные применения теории дифференциальных уравнений в естествознании.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения - это уравнения вида F (t , x , x ", x "",..., x (n )) = 0 , где x = x (t ) - неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от переменной времени t , штрих означает дифференцирование по t . Число n называется порядком дифференциального уравнения.

Решением (или решением) дифференциального уравнения называется функция, дифференцируется n раз, и удовлетворяет уравнению во всех точках своей области определения. Обычно существует целое множество таких функций, и для выбора одной из развязок нужно наложить на нее дополнительные условия: например, требовать, чтобы решения принимал в определенной точке определенное значение.

Основные задачи и результаты теории дифференциальных уравнений: существование и единственность решения различных задач для ОДУ, методы розьязання простых ОДУ, качественное исследование решений ОДУ без нахождения их явного вида.

Дифференциальные уравнения в частных производных

Дифференциальные уравнения в частных производных - это уравнения, содержащие неизвестные функции от нескольких переменных и их частных производных.

Общий вид таких уравнений можно представить в виде:

,

где - независимые переменные, а - функция этих переменных.

Нелинейные дифференциальные уравнения

Нелинейные дифференциальные уравнения - раздел математики, изучающий теорию и способы решения нелинейных уравнений, содержащих искомую функцию и ее производные различных порядков одного аргумента (обычные нелинейные дифференциальные) или нескольких аргументов (нелинейные дифференциальные уравнения в частных производных). Дифференциальные уравнения широко используются на практике, в частности для описания переходных процессов.

Теория нелинейных дифференциальных уравнений - раздел математики, занимающийся изучением дифференциальных уравнений и связанных с ними задач. Их результаты применяются во многих естественных науках: механике, физике, термоупругости, оптике.

Нелинейное дифференциальное уравнение - это уравнение, в котором неизвестной величиной является некоторая функция. В самом дифференциальном уравнении участвует не только неизвестная функция, но и различные ее производные в нелинейном виде. Нелинейным дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др..

Различают обычные нелинейные дифференциальные уравнения и нелийни дифференциальные уравнения в частных производных.

Нелинейные дифференциальные уравнения возникли из задач нелинейной механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции от времени.

Примеры

  • Второй закон Ньютона можно записать в форме дифференциального уравнения
,

где m - масса тела, x - его координата, F (x , t ) - сила, действующая на тело с координатой x в момент времени t . Его решением является траектория движения тела под действием указанной силы.

  • Колебания струны задается уравнением
,

где u = u (x , t ) - отклонение струны в точке с координатой x в момент времени t , параметр a задает свойства струны.

Содержание статьи

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость – производная от расстояния; аналогично, ускорение – производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

Примеры.

Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений.

1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x – количество вещества в некоторый момент времени t , то этот закон можно записать так:

где dx /dt – скорость распада, а k – некоторая положительная постоянная, характеризующая данное вещество. (Знак «минус» в правой части указывает на то, что x убывает со временем; знак «плюс», подразумеваемый всегда, когда знак явно не указан, означал бы, что x возрастает со временем.)

2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м 3 воды. Если чистая вода вливается в емкость со скоростью 1 м 3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x – количество соли (в кг) в емкости в момент времени t , то в любой момент времени t в 1 м 3 раствора в емкости содержится x /100 кг соли; поэтому количество соли убывает со скоростью x /100 кг/мин, или

3) Пусть на тело массы m , подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x – величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2 x /dt 2) пропорционально силе:

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины.

4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

где T – температура кофе в момент времени t .

5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y – расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

где члены -ax и -by описывают военные расходы каждой из стран, k и l – положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.)

После того, как задача записана на языке дифференциальных уравнений, следует попытаться их решить, т.е. найти величины, скорости изменения которых входят в уравнения. Иногда решения находятся в виде явных формул, но чаще их удается представить лишь в приближенном виде или же получить о них качественную информацию. Часто бывает трудно установить, существует ли решение вообще, не говоря уже о том, чтобы найти его. Важный раздел теории дифференциальных уравнений составляют так называемые «теоремы существования», в которых доказывается наличие решения у того или иного типа дифференциальных уравнений.

Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений.

Дифференциальному уравнению, например dy /dx = x /y , удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее – целое их семейство. Решить дифференциальное уравнение – это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y 2 – x 2 = c , где c – любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y 2 – x 2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Можно показать, что в примере (1) общее решение имеет вид x = ce kt , где c – постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) – частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e t /100 . Уравнение из примера (4) имеет общее решение T = 70 + ce kt и частное решение 70 + 130 –kt ; чтобы определить значение k , необходимы дополнительные данные.

Дифференциальное уравнение dy /dx = x /y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение.

Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции – степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие.

Уравнения с разделяющимися переменными.

Уравнения вида dy /dx = f (x )/g (y ) можно решить, записав его в дифференциалах g (y )dy = f (x )dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy /dx = x /y имеем f (x ) = x , g (y ) = y . Записав его в виде ydy = xdx и проинтегрировав, получим y 2 = x 2 + c . К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах.

Если дифференциальное уравнение имеет вид dy /dx = M (x ,y )/N (x ,y ), где M и N – две заданные функции, то его можно представить как M (x ,y )dx N (x ,y )dy = 0. Если левая часть является дифференциалом некоторой функции F (x ,y ), то дифференциальное уравнение можно записать в виде dF (x ,y ) = 0, что эквивалентно уравнению F (x ,y ) = const. Таким образом, кривые-решения уравнения – это «линии постоянных уровней» функции, или геометрические места точек, удовлетворяющих уравнениям F (x ,y ) = c . Уравнение ydy = xdx (рис. 1) – с разделяющимися переменными, и оно же – в полных дифференциалах: чтобы убедиться в последнем, запишем его в виде ydy xdx = 0, т.е. d (y 2 – x 2) = 0. Функция F (x ,y ) в этом случае равна (1/2)(y 2 – x 2); некоторые из ее линий постоянного уровня представлены на рис. 1.

Линейные уравнения.

Линейные уравнения – это уравнения «первой степени» – неизвестная функция и ее производные входят в такие уравнения только в первой степени. Таким образом, линейное дифференциальное уравнение первого порядка имеет вид dy /dx + p (x ) = q (x ), где p (x ) и q (x ) – функции, зависящие только от x . Его решение всегда можно записать с помощью интегралов от известных функций. Многие другие типы дифференциальных уравнений первого порядка решаются с помощью специальных приемов.

Уравнения старших порядков.

Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2 x /dt 2 = –kx . Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2 x /dt 2 = –kx и потребуем, чтобы y (0) = y (1) = 0. Функция y є 0 заведомо является решением, но если – целое кратное числа p , т.е. k = m 2 n 2 p 2, где n – целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx . Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах.

Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) – уравнение

где a и b – заданные постоянные, f (x ) – заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения.

Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремы существования.

Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования – убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy /dx = –2y имеет ровно одно решение, проходящее через каждую точку плоскости (x ,y ), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy /dx ) 2 = 1 – y 2 имеет много решений. Среди них прямые y = 1, y = –1 и кривые y = sin(x + c ). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Дифференциальные уравнения в частных производных.

Обыкновенное дифференциальное уравнение – это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным.

В физике примерами таких уравнений являются уравнение Лапласа

X , y ) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.

Дифференциальное уравнение уравнение связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию её производные и независимые переменные; однако не любое уравнение содержащее производные неизвестной функции является дифференциальным уравнением. Нелинейное дифференциальное уравнение дифференциальное уравнение обыкновенное или с частными производными в которое по крайней мере одна...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ПГУ им. Т.Г. Шевченко

Курсовая работа

Виды нелинейных дифференциальных уравнений 1-го порядка

Выполнил:

Студент 211 группы

Специальности «ИКТиСС»

Бирт Игорь Андреевич

Проверил:

Тирасполь 2014 год

1. Введение 3 стр.

2. Виды дифференциальных уравнений 4 стр.

3. Практическая часть 8 стр.

4. Литература 20 стр.

  1. ВВЕДЕНИЕ

Дифференциальное уравнение — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением.

Порядок дифференциального уравнения — наибольший порядок производных, входящих в него.

Процесс решения дифференциального уравнения называется интегрированием.

Все дифференциальные уравнения можно разделить на линейные и не линейные.

Нелинейное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или с частными производными ), в к ото рое по крайней мере о дна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию ) входит нелинейно .

Иногда под Н.Д.У. понимается наиболее общее уравнение определенного вида. Напр ., нелинейнымобыкновенным дифференциальным уравнением 1 - го порядка наз . уравнение с произвольной

функцией при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н . д . у . с частными производными 1-го порядка для неизвестной функции z

от независимых переменных имеет вид:

где F - произвольная функция своих аргументов ;

Виды нелинейных дифференциальных уравнений 1-го порядка:

Уравнения с разделенными переменными

П1.


Общий интеграл

П2.


Общий интеграл


Уравнение в полных дифференциалах

Где

Существует такая функция u(x, y) , что


Общий интеграл уравнения в полных дифференциалах u(x, y) = C.

Функция u может быть представлена в виде

Однородное уравнение

где P(x, y) , Q(x, y) - однородные функции одной и той же степени

Подстановка y = ux , dy = xdu + udx переводит однородное уравнение в линейное относительно функции u :

Уравнение вида

1. Если прямые и пересекаются в точке

(x 0 ; y 0 ), то замена приводит его к однородному уравнению

2. Если прямые и параллельны, то замена приводит к уравнению с разделяющимися переменными

Уравнение Бернулли

Подстановкой сводится к линейному


Уравнение Риккати

Если известно какое-либо из решений, то уравнение сводится к

линейному подстановкой.


Уравнение Лагранжа

Дифференцируя по x и полагая y" = p , приходим к линейному уравнению относительно x как функции p :


Уравнение Клеро

Частный случай уравнения Лагранжа.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Уравнения Риккати

Решить дифференциальное уравнение

y" = y + y 2 + 1.

Решение.

Данное уравнение является простейшим уравнением Риккати с постоянными коэффициентами. Переменные x, y здесь легко разделяются, так что общее решение уравнения определяется в следующем виде:

Решить уравнение Риккати

Решение

Будем искать частное решение в форме:

Подставляя это в уравнение, находим:

Получаем квадратное уравнение для c:

Мы можем выбрать любое значение c. Например, пусть c = 2. Теперь, когда частное решение известно, сделаем замену:

Снова подставим это в исходное уравнение Риккати:

Как видно, мы получили уравнение Бернулли с параметром m = 2. Сделаем еще одну замену:

Разделим уравнение Бернулли на z2 (полагая, что z ≠ 0) и запишем его через переменную v:

Последнее уравнение является линейным и легко решается с помощью интегрирующего множителя:

Общее решение линейного уравнения определяется функцией

Теперь мы будем последовательно возвращаться к предыдущим переменным. Так как z = 1/v, то общее решение для z записывается следующим образом:

Следовательно,

Можно переименовать константу: 3C = C1 и записать ответ в виде

где C1 − произвольное действительное число.

Уравнения Бернули

Решение.

Данное уравнение является уравнением Бернулли с дробным параметром

m = 1/2. Его можно свести к линейному дифференциальному уравнению с помощью замены

Производная новой функции z (x ) будет равна

Разделим исходное уравнение Бернулли на

Аналогично другим примерам на этой веб-странице, корень y = 0 также является тривиальным решением дифференциального уравнения. Поэтому можно записать:

Заменяя y на z , находим:

Итак, мы имеем линейное уравнение для функции z (x ). Интегрирующий множитель здесь будет равен

Выберем в качестве интегрирующего множителя функцию u (x ) = x . Можно проверить, что после умножения на u (x ) левая часть уравнения будет представлять собой производную произведения z (x ) u (x ):

Тогда общее решение линейного дифференциального уравнения будет определяться выражением:

Возвращаясь к исходной функции y (x ), записываем решение в неявной форме:

Итак, полный ответ имеет вид:

Уравнения с разделяющимися переменными

Найти все решения дифференциального уравнения

y" = −xe y .

Решение.

Преобразуем уравнение следующим образом:

Очевидно, что деление на e y не приводит к потере решения, поскольку e y > 0. После интегрирования получаем

Данный ответ можно выразить в явном виде:

В последнем выражении предполагается, что константа C > 0, чтобы удовлетворить области определения логарифмической функции.

Найти частное решение уравнения, при

y(0) = 0.

Решение.

Перепишем уравнение в следующем виде:

Разделим обе части на 1 + e x :

Поскольку 1 + e x > 0, то при делении мы не потеряли никаких решений. Интегрируем полученное уравнение:

Теперь найдем константу C из начального условия y(0) = 0.

Следовательно, окончательный ответ имеет вид:

Уравнение Клеро

y = xy" + (y") 2

Решение

Полагая y" = p, его можно записать в виде

Продифференцировав по переменной x, находим:

Заменим dy на pdx:

Приравнивая первый множитель к нулю, получаем:

Теперь подставим это во второе уравнение:

В результате получаем общее решение заданного уравнения Клеро. Графически, это решение представляется в виде однопараметрического семейства прямых. Приравнивая нулю второй сомножитель, находим еще одно решение:

Это уравнение соответствует особому решению дифференциального уравнения и в параметрической форме записывается как

Исключая p из системы, получаем следующее уравнение интегральной кривой:

С геометрической точки зрения, парабола

является огибающей семейства прямых, определяемых общим решением.

Найти общее и особое решения дифференциального уравнения

Решение.

Введем параметр y" = p:

Дифференцируя обе части уравнения по переменной x, получаем:

Поскольку dy = pdx, то можно записать:

Рассмотрим случай dp = 0. Тогда p = C. Подставляя это в уравнение, находим общее решение:

Графически это решение соответствует однопараметрическому семейству прямых линий.

Второй случай описывается уравнением

Найдем соответствующее параметрическое выражение для y:

Параметр p можно исключить из формул для x и y. Возводя последние уравнения в квадрат и складывая их, получаем:

Полученное выражение является уравнением окружности радиусом 1, расположенным в начале координат. Таким образом, особое решение представляется единичной окружностью в плоскости xy, которая является огибающей для семейства прямых линий.

ЛИТЕРАТУРА

  1. Н.С. Пискунов "Дифференциальное и интегральное исчисление", том второй, издательство "Наука", Москва 1985
  1. В. Ф. Зайцев, А. Д. Полянин. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит, 2001.
  1. К.Н. Лунгу, В.П. Норин и др. "Сборник задач по высшей математике", второй курс, Москва: Айрис-пресс, 2007
  1. Э. Камке. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
  1. Источники информации в интернете.

PAGE \* MERGEFORMAT 19

Другие похожие работы, которые могут вас заинтересовать.вшм>

13541. Основные типы дифференциальных уравнений первого порядка 113.05 KB
Рассмотрим уравнение XxdxYydy=0 1 в котором коэффициент при dx зависит только от x а коэффициент при dy – только от y. Такое уравнение называется уравнением с разделенными переменными. Тогда уравнение 1 можно переписать так. К уравнению с разделенными переменными легко приводится уравнение вида p1xp2ydx q1xq2ydy = 0 в котором коэффициенты при dx и dy представляют собой произведения функции от x на функцию от y.
13536. Элементы общей теории обыкновенных дифференциальных уравнений первого порядка 129.39 KB
Такие уравнения называются дифференциальными. Аналогичное исследование с помощью дифференциального уравнения можно провести и для изучения экстратока замыкания. Для того чтобы найти эту функцию отделим переменные t и x друг от друга собрав члены с x в левой части уравнения а члены с t в правой: .
19450. Численные методы решения нелинейных уравнений 156.56 KB
Видим что обе части не являются алгебраическими и содержат тригонометрические формулы значит это трансцендентное уравнение для решения которого не существует формул для отыскания корней. Построим график для того чтобы примерно определить промежутки содержащие корни см. Для этого реализуем метод половинного деления. Для того чтобы использовать эту функцию напишем скрипт который будет выводить первые пять корней отмечать их на графике а также использовать встроенную функцию для проверки решения и вычислять резонансные частоты стержня.
6217. Методы нахождения корней системы нелинейных уравнений 284.94 KB
Методы нахождения корней системы нелинейных уравнений. Для системы из 2 уравнений это можно сделать графически но для систем высоких порядков удовлетворительных методов отделения корней не существует. Проблема решения системы 1 возникает при решении многих прикладных задач например поиска безусловного экстремума функций многих переменных с помощью необходимых условий...
1726. Вычисление корней нелинейных уравнений методом Ньютона 123.78 KB
Целью данной курсовой работы является изучение и реализация в программном продукте решения нелинейных уравнений при помощи метода Ньютона. Первый раздел теоретический и содержит общие сведения о методе Ньютона.
19491. Решение дифференциальных уравнений в частных производных 267.96 KB
Экранированная двухпроводная линия РАСЧЕТ Для выполнения расчета необходимо запустить PDE Toolbox для этого необходимо выполнить команду pdetool в рабочей области MTLB.– Двухмерная модель проводящей линии Сначала из геометрических примитивов строиться модель системы см...
19443. Методы решения обыкновенных дифференциальных уравнений 72.36 KB
Для начала рассмотрим метод Эйлера так как является самым простым из существующих численных методов решения дифференциальных уравнений и в конце сравним результаты. Метод Эйлера является явным одношаговым методом первого порядка точности основанном на аппроксимации интегральной кривой кусочно-линейной функцией...
6215. Численные методы решения обыкновенных дифференциальных уравнений 1.42 MB
Порядком обыкновенного дифференциального уравнения называется порядок старшей производной от искомой функции. Общим интегралом уравнения. неявным образом причем число постоянных интегрирования равно порядку уравнения. Общим решением обыкновенного дифференциального уравнения называется функция.
13538. Понятие о численных методах решения обыкновенных дифференциальных уравнений 153.35 KB
Недостатки метода Эйлера 4. Идея метода Эйлера очень проста. В результате приходим к приближённому уравнению: Поскольку по определению у= окончательно имеем следующее уравнение являющееся основой метода Эйлера: 8 Конечно это уравнение является лишь приближённым и мы надеемся что чем меньше величина шага h тем оно будет более точным уменьшается локальная погрешность метода то есть погрешность на одном его шаге.
3551. Визуализация численных методов. Решение обыкновенных дифференциальных уравнений 143.97 KB
Дифференциальными уравнениями называются уравнения, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Первые дифференциальные уравнения возникли из задач механики...

Дифференциа́льное уравне́ние - уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением. [

Дифференциальное уравнение порядка выше первого можно преобразовать в систему уравнений первого порядка, в которой число уравнений равно порядку исходного уравнения.

Современные быстродействующие ЭВМ эффективно дают численное решение обыкновенных дифференциальных уравнений, не требуя получения его решения в аналитическом виде. Это позволило некоторым исследователям утверждать, что решение задачи получено, если её удалось свести к решению обыкновенного дифференциального уравнения.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения (ОДУ) - это уравнения, зависящие от одной независимой переменной; они имеют вид

Или

где - неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от независимой переменной штрих означает дифференцирование по Число называется порядком дифференциального уравнения. Наиболее практически важными являются дифференциальные уравнения первого и второго порядка.

Порядок дифференциального уравнения

Порядком дифференциального уравнения называют наивысший порядок производной, входящей в данное уравнение.

Простейшие дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка - класс дифференциальных уравнений первого порядка, наиболее легко поддающихся решению и исследованию. К нему относятся уравнения в полных дифференциалах, уравнения с разделяющимися переменными, однородные уравнения первого порядка и линейные уравнения первого порядка. Все эти уравнения можно проинтегрировать в конечном виде.

Отправной точкой изложения будет служить дифференциальное уравнение первого порядка, записанное в т. н. симметричной форме:

где функции и определены и непрерывны в некоторой области .

Дифференциальные уравнения в частных производных

Дифференциальные уравнения в частных производных (УРЧП) - это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где - независимые переменные, а - функция этих переменных. Порядок уравнений в частных производных может определяется так же, как для обыкновенных дифференциальных уравнений. Ещё одной важной классификацией уравнений в частных производных является их разделение на уравнения эллиптического, параболического и гиперболического типа, в особенности для уравнений второго порядка.

Линейные и нелинейные дифференциальные уравнения

Как обыкновенные дифференциальные уравнения, так и уравнения в частных производных можно разделить на линейные и нелинейные . Дифференциальное уравнение является линейным, если неизвестная функция и её производные входят в уравнение только в первой степени (и не перемножаются друг с другом). Для таких уравнений решения образуют аффинное подпространство пространства функций. Теория линейных ДУ развита значительно глубже, чем теория нелинейных уравнений. Общий вид линейного дифференциального уравнения n -го порядка:

где p i (x ) - известные функции независимой переменной, называемые коэффициентами уравнения. Функция r (x ) в правой части называется свободным членом (единственное слагаемое, не зависящее от неизвестной функции) Важным частным классом линейных уравнений являются линейные дифференциальные уравнения с постоянными коэффициентами .

Подклассом линейных уравнений являются однородные дифференциальные уравнения - уравнения, которые не содержат свободного члена: r (x ) = 0. Для однородных дифференциальных уравнений выполняется принцип суперпозиции: линейная комбинация частных решений такого уравнения также будет его решением. Все остальные линейные дифференциальные уравнения называются неоднородными дифференциальными уравнениями.

Нелинейные дифференциальные уравнения в общем случае не имеют разработанных методов решения, кроме некоторых частных классов. В некоторых случаях (с применением тех или иных приближений) они могут быть сведены к линейным. Например, линейное уравнение гармонического осциллятора может рассматриваться как приближение нелинейного уравнения математического маятника для случая малых амплитуд, когда y ≈ sin y .

Содержание статьи

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость – производная от расстояния; аналогично, ускорение – производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

Примеры.

Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений.

1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x – количество вещества в некоторый момент времени t , то этот закон можно записать так:

где dx /dt – скорость распада, а k – некоторая положительная постоянная, характеризующая данное вещество. (Знак «минус» в правой части указывает на то, что x убывает со временем; знак «плюс», подразумеваемый всегда, когда знак явно не указан, означал бы, что x возрастает со временем.)

2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м 3 воды. Если чистая вода вливается в емкость со скоростью 1 м 3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x – количество соли (в кг) в емкости в момент времени t , то в любой момент времени t в 1 м 3 раствора в емкости содержится x /100 кг соли; поэтому количество соли убывает со скоростью x /100 кг/мин, или

3) Пусть на тело массы m , подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x – величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2 x /dt 2) пропорционально силе:

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины.

4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

где T – температура кофе в момент времени t .

5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y – расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

где члены -ax и -by описывают военные расходы каждой из стран, k и l – положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.)

После того, как задача записана на языке дифференциальных уравнений, следует попытаться их решить, т.е. найти величины, скорости изменения которых входят в уравнения. Иногда решения находятся в виде явных формул, но чаще их удается представить лишь в приближенном виде или же получить о них качественную информацию. Часто бывает трудно установить, существует ли решение вообще, не говоря уже о том, чтобы найти его. Важный раздел теории дифференциальных уравнений составляют так называемые «теоремы существования», в которых доказывается наличие решения у того или иного типа дифференциальных уравнений.

Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений.

Дифференциальному уравнению, например dy /dx = x /y , удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее – целое их семейство. Решить дифференциальное уравнение – это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y 2 – x 2 = c , где c – любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y 2 – x 2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Можно показать, что в примере (1) общее решение имеет вид x = ce kt , где c – постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) – частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e t /100 . Уравнение из примера (4) имеет общее решение T = 70 + ce kt и частное решение 70 + 130 –kt ; чтобы определить значение k , необходимы дополнительные данные.

Дифференциальное уравнение dy /dx = x /y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение.

Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции – степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие.

Уравнения с разделяющимися переменными.

Уравнения вида dy /dx = f (x )/g (y ) можно решить, записав его в дифференциалах g (y )dy = f (x )dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy /dx = x /y имеем f (x ) = x , g (y ) = y . Записав его в виде ydy = xdx и проинтегрировав, получим y 2 = x 2 + c . К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах.

Если дифференциальное уравнение имеет вид dy /dx = M (x ,y )/N (x ,y ), где M и N – две заданные функции, то его можно представить как M (x ,y )dx N (x ,y )dy = 0. Если левая часть является дифференциалом некоторой функции F (x ,y ), то дифференциальное уравнение можно записать в виде dF (x ,y ) = 0, что эквивалентно уравнению F (x ,y ) = const. Таким образом, кривые-решения уравнения – это «линии постоянных уровней» функции, или геометрические места точек, удовлетворяющих уравнениям F (x ,y ) = c . Уравнение ydy = xdx (рис. 1) – с разделяющимися переменными, и оно же – в полных дифференциалах: чтобы убедиться в последнем, запишем его в виде ydy xdx = 0, т.е. d (y 2 – x 2) = 0. Функция F (x ,y ) в этом случае равна (1/2)(y 2 – x 2); некоторые из ее линий постоянного уровня представлены на рис. 1.

Линейные уравнения.

Линейные уравнения – это уравнения «первой степени» – неизвестная функция и ее производные входят в такие уравнения только в первой степени. Таким образом, линейное дифференциальное уравнение первого порядка имеет вид dy /dx + p (x ) = q (x ), где p (x ) и q (x ) – функции, зависящие только от x . Его решение всегда можно записать с помощью интегралов от известных функций. Многие другие типы дифференциальных уравнений первого порядка решаются с помощью специальных приемов.

Уравнения старших порядков.

Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2 x /dt 2 = –kx . Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2 x /dt 2 = –kx и потребуем, чтобы y (0) = y (1) = 0. Функция y є 0 заведомо является решением, но если – целое кратное числа p , т.е. k = m 2 n 2 p 2, где n – целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx . Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах.

Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) – уравнение

где a и b – заданные постоянные, f (x ) – заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения.

Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремы существования.

Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования – убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy /dx = –2y имеет ровно одно решение, проходящее через каждую точку плоскости (x ,y ), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy /dx ) 2 = 1 – y 2 имеет много решений. Среди них прямые y = 1, y = –1 и кривые y = sin(x + c ). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Дифференциальные уравнения в частных производных.

Обыкновенное дифференциальное уравнение – это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным.

В физике примерами таких уравнений являются уравнение Лапласа

X , y ) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.